સમાંતર શ્રેણીનાં $n$ પદોનો સરવાળો $3n^2 + 5n$ અને $t_n = 164$ હોય, તો $n =…..$

  • A

    $26$

  • B

    $27$

  • C

    $28$

  • D

    $29$

Similar Questions

ચાર સંખ્યાઓ સમાંતર શ્રેણીમાં છે. તેના પહેલાં અને છેલ્લા પદનો સરવાળો $8$ છે અને વચ્ચે બે પદનો ગુણાકાર $15$ છે, તો શ્રેણીની સૌથી નાની સંખ્યા કઈ છે?

$p , q \in R$ માટે, વાસ્તવિક વિધેય $f(x)=(x- p )^{2}- q , x \in R$ અને $q >0$ ધ્યાનેન લો. ધારોકે $a _{1}, a _{2}, a _{3}$ અને $a _{4}$ એ સમાંતર શ્રેણીમાં છે તથા તેનો મધ્યક $p$ અને સામાન્ય તફાવત ધન છે. જો પ્રત્યેક $i=1,2,3,4$ માટે $\left|f\left( a _{i}\right)\right|=500$, તો $f(x)=0$ નાં બીજો વચ્ચેનો નિરપેક્ષ તફાવત ............ છે.

  • [JEE MAIN 2022]

સમાંતર શ્રેણીનું $n$ મું પદ $3n - 1$ હોય, તો તેના પ્રથમ પાંચ પદોનો સરવાળો....... છે.

આપેલ ગણ $\{9,99,999,...., 999999999\}$ ના નવ સંખ્યાઓનો સમાંતર મધ્યક $9$ અંકોનો $N$,જ્યાં બધા અંકો ભિન્ન છે , સંખ્યા $N$ માં ક્યો અંક ન હોય ? 

ધારો કે $3, 6. 9, 12,$ .. $(78$ પદો સુધી) અને $5, 9, 13,$ $17, \ldots(59$ પદો સુધી) બે શ્રેણીઓ છે.,તો બંને શ્રેણીઓનાં સામાન્ય પદોનો સરવાળો $\dots\dots$છે.

  • [JEE MAIN 2022]