સમાંતર શ્રેણીનાં $n $ પદોનો સરવાળો $nA + n^2B$  છે, જ્યાં $A$ અને $B$ અચળ છે, તો આ શ્રેણીનો સામાન્ય તફાવત....... છે.

  • A

    $A - B$

  • B

    $A + B$

  • C

    $2A$

  • D

    $2B$

Similar Questions

$2$ અથવા $5$ વડે વિભાજ્ય હોય તેવી $1$ થી $100$ વચ્ચેની સંખ્યાનો સરવાળો મેળવો.

  • [IIT 1984]

ધારો કે $x_1, x_2 \ldots, x_{100}$ સમાંતર શ્રેણીમાં છે, જ્યાં $x_1=2$ અને તેઓનો મધ્યક $200$ છે.જો $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ હોય,તો $y_1, y_2, \ldots, y_{100}$ નો મધ્યક

$..........$ છે.

  • [JEE MAIN 2023]

જો સમાંતર શ્રેણીનું $p, q$ અને $r$ મું પદ અનુક્રમે $a, b$ અને $c$ હોય, તો $[a (q - r) + b(r - p) + c(p -q)]=.…….$

ધારો કે $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$ એ ધન પદોવાળી સમાંતર શ્રેણી છે. ધારોકે

$A_k=a_1^2-a_2^2+a_3^2-a_4^2+\ldots+a_{2 k-1}^2-a_{2 k}^2$ .

જો $\mathrm{A}_3=-153, \mathrm{~A}_5=-435$ અને $\mathrm{a}_1^2+\mathrm{a}_2^2+\mathrm{a}_3^2=66$ હોય, તો $\mathrm{a}_{17}-\mathrm{A}_7=$............

  • [JEE MAIN 2024]

આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ માટે $n\,>\,2$