$8$ અને $26$ વચ્ચે $5$ સંખ્યાઓ ઉમેરો કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને.
Let $A_{1}, A_{2}, A_{3}, A_{4}$ and $A_{5}$ be five numbers between $8$ and $26$ such that $8, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, 26$ is an $A.P.$
Here, $a=8, b=26, n=7$
Therefore, $26=8+(7-1) d$
$\Rightarrow 6 d=26-8=18$
$\Rightarrow d=3$
$A_{1}=a+d=8+3=11$
$A_{2}=a+2 d=8+2 \times 3=8+6=14$
$A_{3}=a+3 d=8+3 \times 3=8+9=17$
$A_{4}=a+4 d=8+4 \times 3=8+12=20$
$A_{5}=a+5 d=8+5 \times 3=8+15=23$
Thus, the required five numbers between $8$ and $26$ are $11,14,17,20$ and $23 .$
જો એક સમાંતર શ્રેણીનું પ્રથમ પદ $3$ અને તેના પ્રથમ $25$ પદોનો સરવાળો તે પછીના બીજા $15$ પદોનો સરવાળા જેટલો થાય તો સમાંતર શ્રેણીનો સામાન્ય તફાવત મેળવો
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $3n^2 + 5n$ હોય અને $T_m = 164$ હોય તો $m = ….$
ધારો કે $\mathrm{S}_{\mathrm{n}}$ એક સમાંતર શ્રેણીના પ્રથમ $\mathrm{n}$ પદ્દોનો સરવાળો દર્શાવે છે. જે $\mathrm{S}_{10}=390$ તથા દસમા અને પાંચમા પદોનો ગુણોત્તર $15: 7$ હોય, તો $S_{15}-S_5=$........................
ધારો કે $x_1, x_2 \ldots, x_{100}$ સમાંતર શ્રેણીમાં છે, જ્યાં $x_1=2$ અને તેઓનો મધ્યક $200$ છે.જો $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ હોય,તો $y_1, y_2, \ldots, y_{100}$ નો મધ્યક
$..........$ છે.
એક માણસ તેની નોકરીના પ્રથમ ત્રણ મહિનામાં $200$ રૂપિયાની બચત કરે છે. તે પછીના મહિનામાં તેની બચત પહેલાંના મહિના કરતાં $40$ રૂપિયા છે. નોકરીની શરૂઆતથી કેટલા ................. મહિના પછી તેની કુલ બચત $11040$ રૂપિયા થશે ?