જો $\frac{1}{p+q},\,\frac{1}{r+p}\,\,$ અને $\frac{1}{q+r}\,$ સમાંતર શ્રેણીમાં હોયતો.........
$p, q, r$ સમાંતર શ્રેણીમાં છે.
$p^2, q^2, r^2$ સમાંતર શ્રેણીમાં છે.
$\frac{1}{p},\,\frac{1}{q},\frac{1}{r}\,\,$ સમાંતર શ્રેણીમાં છે.
આમાંથી એક પણ નહિ.
જો $a, b, c$ એ ત્રણ સમગુણોત્તર શ્રેણીના ત્રણ ભિન્ન પદો હોય તથા સમીકરણ $ax^2 + 2bc + c = 0$ અને $dx^2 + 2ex + f = 0$ ને સામાન્ય ઉકેલો હોય તો નીચેનાના માંથી ક્યું વિધાન સાચું છે ?
જો સમાંતર શ્રેણીનું $10^{\text {th }}$ મુ પદ $\frac{1}{20}$ અને તેનું $20^{\text {th }}$ મુ પદ $\frac{1}{10},$ હોય તો પ્રથમ $200$ પદોનો સરવાળો મેળવો.
જો $a,b,c$ સમાંતર શ્રેણીમાં હોય, તો $\frac{1}{{\sqrt b \, + \,\sqrt c }},\,\frac{1}{{\sqrt c + \,\sqrt a }},\,\frac{1}{{\sqrt a \, + \,\sqrt b }}\,\, = \,\,......$
સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$ $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{n}{n+1}$