વિધાન $- I :$ જો શ્રેણીના $n$ પદોનો સરવાળો $6n^2 + 3n + 1$ થાય, તો તે સમાંતર શ્રેણી હોય
વિધાન $-II :$ સમાંતર શ્રેણીના $n$ પદોનો સરવાળો હંમેશા $an^2 + bn$ સ્વરૂપમાં હોય.
વિધાન$- I$ સાચું છે. વિધાન$-II$ સાચું છે. વિધાન$-I$ એ વિધાન$-II$ ની સાચી સમજૂતી છે.
વિધાન$- I$ સાચું છે. વિધાન$-II$ સાચું છે. વિધાન$-II$ એ વિધાન$-I$ ની સાચી સમજૂતી નથી.
વિધાન$- I$ સાચું છે. વિધાન$-II$ ખોટું છે.
વિધાન$- I$ ખોટું છે. વિધાન$-II$ સાચું છે.
જો શ્રેણીનું $n$ મું પદ $n(n+1)$ હોય તો તેના $n$ પદોનો સરવાળો કેટલો થાય ?
$1, 2, 4, 8, 16, .......2^n $ શ્રેણીનો સમાંતર મધ્યક :
જો શ્રેણીના $n $ પદોનો સરવાળો $3n^2 + 4n$ ; થાય, તો તે કઈ શ્રેણી હોય ?
ફિબોનાકી શ્રેણી,
$1 = {a_1} = {a_2}{\rm{ }}$ અને $n\, > \,2$ માટે${a_n} = {a_{n - 1}} + {a_{n - 2}},$ દ્વારા વ્યાખ્યાયિત થાય છે.
$n=1,2,3,4,5$ માટે $\frac{a_{n+1}}{a_{n}},$ મેળવો.
જો $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ સમાંતર શ્રેણીમાં હોય તો સાબિત કરો કે $a, b, c$ સમાંતર શ્રેણીમાં છે.