વિધાન $- I :$ જો શ્રેણીના $n$ પદોનો સરવાળો $6n^2 + 3n + 1$ થાય, તો તે સમાંતર શ્રેણી હોય
વિધાન $-II :$ સમાંતર શ્રેણીના $n$ પદોનો સરવાળો હંમેશા $an^2 + bn$ સ્વરૂપમાં હોય.
વિધાન$- I$ સાચું છે. વિધાન$-II$ સાચું છે. વિધાન$-I$ એ વિધાન$-II$ ની સાચી સમજૂતી છે.
વિધાન$- I$ સાચું છે. વિધાન$-II$ સાચું છે. વિધાન$-II$ એ વિધાન$-I$ ની સાચી સમજૂતી નથી.
વિધાન$- I$ સાચું છે. વિધાન$-II$ ખોટું છે.
વિધાન$- I$ ખોટું છે. વિધાન$-II$ સાચું છે.
ગણ $\{\alpha \in\{1,2, \ldots, 100\}$ ગુ.સા.અ.$(\alpha, 24)=1\}$ ના તમામ ધટકોનો સરવાળો
${S_1},{S_2},......,{S_{101}}$ એ કોઈ સમાંતર શ્રેણીના ક્રમિક પદો છે જો $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ અને ${S_1} + {S_{101}} = 50$ ,હોય તો $\left| {{S_1} - {S_{101}}} \right|$ ની કિમત મેળવો
જો $x,y,z$ સમાંતર શ્રેણીમાં હોય અને ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ અને ${\tan ^{ - 1}}z$ પણ કોઇ સમાંતર શ્રેણીમાં હોય તો
$a$ અને $b$ બે સંખ્યાઓ છે. $A$ સમાંતર મધ્યક અને $S$ એ $a $ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો દર્શાવે તો $S/A$ કોના ઉપર આધાર રાખે છે ?
બધી બે અંકોની સંખ્યા કે જેને છ વડે ભાગતા શેષ ચાર મળે, તેનો સરવાળો કેટલો થાય ?