શ્રેણી $0.7, 0.77, 0.777, ......$ ના પ્રથમ $20$ પદોનો સરવાળો કેટલો થાય ?
$\frac{7}{{81}}\,(179\, - \,{10^{ - 20}})$
$\frac{7}{9}\,(99\, - \,{10^{ - 20}})$
$\frac{7}{{81}}\,(179\, + \,{10^{ - 20}})$
$\frac{7}{9}\,(99\, - \,{10^{ - 20}})$
જો $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=S -211$ હોય તો $S$ ની કિમત શોધો
જો $(y - x), 2(y - a)$ અને $(y - z)$ સ્વરીત શ્રેણીમાં હોય તો $x -a, y -a, z - a …..$ શ્રેણીમાં છે.
શ્રેણીઓ $a,$ $ar,$ $a r^{2},$ $......a r^{n-1}$ અને $A, A R, A R^{2}, \ldots, A R^{n-1}$ નાં સંગત પદોના ગુણાકાર દ્વારા મળતાં પદો સમગુણોત્તર શ્રેણી બનાવે છે તેમ સાબિત કરો અને તેનો સામાન્ય ગુણોત્તર શોધો.
સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : ${{x^3},{x^5},{x^7}, \ldots }$ પ્રથમ $n$ પદ
એક ધન પદોની વધતી સમગુણોત્તર શ્રેણીમાં, બીજા અને છઠ્ઠા પદનો સરવાળો $\frac{70}{3}$ છે તથા ત્રીજા અને પાંચમાં પદનો ગુણાકાર $49$ છે. તો ચોથા, છઠ્ઠા અને આઠમાં પદોનો સરવાળો .......... છે.