સમાંતર શ્રેણીનું પદ $2$ અને સામાન્ય તફાવત $4 $ હોય, તો તેના પ્રથમ $40$ પદોનો સરવાળો........ છે.
$3200$
$2800$
$1600$
$100$
જો $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ અને $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$ ના વિસ્તરણમાં મધ્યમ પદોના સહગુણકો અનુક્રમે સમાંતર શ્રેણીમાં છે અને $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $50-\frac{2 d}{\beta^{2}}$ ની કિમંત મેળવો.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n(n+2)$
ધારો કે $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ પૂર્ણકોનો ગણ છે જ્યાં $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. ધરો કે ગણ $A + A =\{ x + y : x , y \in A \} \quad$ બરાબર $39$ ઘટકો સમાવે છે તો $a_{1}+a_{2}+\ldots \ldots+a_{18}$ નું મૂલ્ય.................. છે
જો ચતુષ્કોણના બધા અંતર્ગત ખૂણાઓ સમાંતર શ્રેણીમાં અને તેમની વચ્ચેનો સામાન્ય તફાવત $10^o$ હોય તો ન્યૂનતમ ખૂણો ............$^o$ થાય ?