જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{, }}{\text{......, }}{{\text{a}}_{\text{n}}}$ સમાંતર શ્રેણી હોય તો $\frac{1}{{{a_1}{a_2}}}\,\, + \,\,\frac{1}{{{a_2}{a_3}}}\, + \,\frac{1}{{{a_3}{a_4}}}\,\, + \,\,......\,\, + \,\frac{1}{{{a_{n - 1}}{a_n}}}\,\, = \,\,......$
$\frac{{{a_1}\,{a_2}}}{{n - 1}}$
$\frac{{n - 1}}{{{a_1} + {a_n}}}$
$\frac{{n - 1}}{{{a_1} - {a_n}}}$
$\frac{{n - 1}}{{{a_1}{a_n}}}$
આપેલ ગણ $\{9,99,999,...., 999999999\}$ ના નવ સંખ્યાઓનો સમાંતર મધ્યક $9$ અંકોનો $N$,જ્યાં બધા અંકો ભિન્ન છે , સંખ્યા $N$ માં ક્યો અંક ન હોય ?
શ્રેણી $a_{n}$ નીચે પ્રમાણે વ્યાખ્યાયિત છે :
${a_1} = 1,$ $n\, \ge \,2$ માટે ${a_n} = {a_{n - 1}} + 2.$
આ શ્રેણીનાં પ્રથમ પાંચ પદ લખો અને સંબંધિત શ્રેઢી લખો :
સમાંતર શ્રેણીનું $p$ મું પદ $q$ અને $q$ મું પદ $p$ હોય, તો તેનું $r$ મું પદ...... થશે.
જો $a, b$ અને $c$ એવા ત્રણ ધન સંખ્યા છે કે જે સમાંતર શ્રેણીમાં છે અને $abc\, = 8$ થાય તો $b$ ની ન્યૂનતમ કિમત મેળવો.
$3 + 7 + 11 +....+ 407$ સમાંતર શ્રેણીમાં છેલ્લેથી $20$ મું પદ ......છે.