જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{, }}{\text{......, }}{{\text{a}}_{\text{n}}}$ સમાંતર શ્રેણી હોય તો $\frac{1}{{{a_1}{a_2}}}\,\, + \,\,\frac{1}{{{a_2}{a_3}}}\, + \,\frac{1}{{{a_3}{a_4}}}\,\, + \,\,......\,\, + \,\frac{1}{{{a_{n - 1}}{a_n}}}\,\, = \,\,......$
$\frac{{{a_1}\,{a_2}}}{{n - 1}}$
$\frac{{n - 1}}{{{a_1} + {a_n}}}$
$\frac{{n - 1}}{{{a_1} - {a_n}}}$
$\frac{{n - 1}}{{{a_1}{a_n}}}$
આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=3, a_{n}=3 a_{n-1}+2$ માટે $n\,>\,1$
જો $a,b,c,d$ અને $p$ જુદી જુદી વાસ્તવિક સંખ્યાઓ હોય કે જેથી $(a^2 + b^2 + c^2)\ p^2 - 2p (ab + bc + cd) + (b^2 + c^2 + d^2) \leq 0$, થાય તો ....
જો ${\left( {1 - 2x + 3{x^2}} \right)^{10x}} = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, હોય તો $a_0,a_1,a_2,...a_n$ નો સમાંતર મધ્યક મેળવો.
સમાંતર શ્રેણીનાં પ્રથમ ચાર પદોનો સરવાળો $56$ છે. તેનાં છેલ્લાં ચાર પદોનો સરવાળો $112$ છે. તેનું પ્રથમ પદ $11$ છે, તો પદોની સંખ્યા શોધો.
સમાંતર શ્રેણીઓ $3,7,11, \ldots ., 407$ અને $2,9,16, \ldots . .709$ ના સામાન્ય પદોની સંખ્યા મેળવો.