જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, .......... }}{{\text{a}}_{{\text{50}}}}{\text{ }}$ સમગુણોત્તર શ્રેણીમાં હોય તો,$\frac{{{a_1} - {a_3} + {a_5} - ..... + {a_{49}}}}{{{a_2} - {a_4} + {a_6} - .... + {a_{50}}}} = ........$

  • A

    $0$

  • B

    $1$

  • C

    $a_1$/$a_2$

  • D

    $a_2$5/$a_2$4

Similar Questions

સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$ પ્રથમ $n$ પદ

સમ ગુણોત્તર શ્રેણીના પ્રથમ બે પદનો સરવાળો $12$ છે. ત્રીજા અને ચોથા પદનો સરવાળો $48$ છે. ગુણોત્તર શ્રેણીના પદો ક્રમિક રીતે ઘન અને ઋણ છે. તો પ્રથમ પદ કયું હોય ?

જો $a,\;b,\;c,\;d$ અને $p$ એ ભિન્ન વાસ્તવિક સંખ્યા છે કે જેથી  $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$, તો $a,\;b,\;c,\;d$ એ . . . .  થાય .

  • [IIT 1987]

સમગુણોત્તર શ્રેણીનાં ત્રણ ક્રમિક પદનો ગુણાકાર $216$ છે અને તેનાં બે-બે પદોના ગુણાકારનો સરવાળો $156$ છે, તો આ પદ.... હશે.

સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$