- Home
- Standard 11
- Mathematics
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, .......... }}{{\text{a}}_{{\text{50}}}}{\text{ }}$ સમગુણોત્તર શ્રેણીમાં હોય તો,$\frac{{{a_1} - {a_3} + {a_5} - ..... + {a_{49}}}}{{{a_2} - {a_4} + {a_6} - .... + {a_{50}}}} = ........$
$0$
$1$
$a_1$/$a_2$
$a_2$5/$a_2$4
Solution
ધારો કે, ……..$a, ar, ar^2 , ar^3 …..ar^{48}, ar^{49}$ એ સમગુણોત્તર શ્રેણીમાં છે.
$a_1 = a, a_2 = ar, a_3 = ar^2,…,a_{49} = ar^{48}, a_{50} = ar^{49}$ છે.
હવે, $\frac{{{a_1} – {a_3} + {a_5} – … + {a_{49}}}}{{{a_2} – {a_4} + {a_6} – … + {a_{50}}}}\,\,$
${\text{ = a – a}}{{\text{r}}^{\text{2}}}{\text{ + a}}{{\text{r}}^{\text{4}}}{\text{ – ….. }}$.(25 પદ સુધી) $/$${\text{ar – a}}{{\text{r}}^{\text{3}}}{\text{ + a}}{{\text{r}}^{\text{5}}}{\text{ – …….. }}{\text{.}}$(25 પદ સુધી)
$ = \frac{{\frac{{a[1 – {{( – {r^2})}^{25}}]}}{{1 – {{( – r)}^2}}}}}{{\frac{{ar[1 – {{( – {r^2})}^{25}}]}}{{1 – {{( – r)}^2}}}}}\,\,\, = \frac{a}{{ar}} = \frac{{{a_1}}}{{{a_2}}}$