લાઈબ્રેરીમાં $n$ ભિન્ન બૂક અને દરેકની $p$ નકલો છે. જેમાં એક અથવા એક કરતાં વધારે બૂકની પસંદગી કરવાની રીતોની સંખ્યા કેટલી થાય ?
$p^n + 1$
$(p + 1)^{n }-1$
$(p + 1)^n -2$
$p^n$
એક કંપનીમાં દસ કર્મચારી છે કંપની એ એક ટીમ બનવાનું નક્કી કર્યું કે જેમાં ઓછામાઓછા ત્રણ કર્મચારી હોય અને ઓછામાઓછા ત્રણ કર્મચારી ન હોય તો એવી કેટલી ટીમો બને ?
$9$ સ્ત્રી અને $8$ પુરુષ માંથી $12$ સભ્યોની એક સમિતિ બનવાની છે કે જેથી ઓછાંમાં ઓછી $5$ સ્ત્રીઓ સમિતિમાં હોય તો કેટલી સમિતિ બનાવી શકાય કે જેમાં અનુક્રમે સ્ત્રીની સંખ્યા મહતમ હોય અને પુરુષની સંખ્યા મહતમ હોય.
ભિન્ન રંગના પાંચ દડાને ભિન્ન કદના ત્રણ ખોખાંમાં મૂકવામાં આવે, દરેક ખોખું બધાં જ પાંચ દડા સમાવી શકે છે. એક પણ ખોખું ખાલી ન રહે તેવી રીતે દડા કેટલી રીતે મૂકી શકાય (ખોખામાં ક્રમ દર્શાવેલ નથી).
જો $\alpha = \left( {\begin{array}{*{20}{c}}
m \\
2
\end{array}} \right)\,\,$ હોય ,તો $\left( {\begin{array}{*{20}{c}}
\alpha \\
2
\end{array}} \right) = ......$
$1, 2, 3$ અને $4$ અંકો વડે $6$ અંકની કેટલી સંખ્યા બનાવી શકાય અને ચોક્કસ બે અંકોની જોડ ધરાવતી કેટલી સંખ્યા મળે $?$