- Home
- Standard 11
- Mathematics
6.Permutation and Combination
easy
જો $\left( {\begin{array}{*{20}{c}}
{{a^2} + a} \\
3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a^2} + a} \\
9
\end{array}} \right)\,$ હોય, તો $a\, = \,\,........$
A
$3$
B
$9$
C
$12$
D
$6$
Solution
$\left( {\begin{array}{*{20}{c}}
{{a^2} + a} \\
{{a^2} + a – 3}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a^2} + a} \\
9
\end{array}} \right)\,\,\,$
${a^2} + a – 3 = 9$
$\,\,{a^2} + a – 12 = 0\,$
$\,(a – 3)(a + 4) = 0$
$a = 3 $ અથવા $ a = -4 $
અહીં, $ a = -4 $ તો $a^2 + a > 0$ થશે
$a = 3$ અને $a = -4$ બંને લઈ શકાશે.
અહીં, $a = 3 $ આપેલ છે.
Standard 11
Mathematics