જો વિઘાર્થીએ $2$ ચોક્કસ વિષયો પસંદ કરવાના ફરજિયાત હોય, તો વિદ્યાર્થી ઉપલબ્ધ $9$ વિષયોમાંથી $5$ વિષયો કેટલા પ્રકારે પસંદ કરી શકે.
There are $9$ courses available out of which, $2$ specific courses are compulsory for every student.
Therefore, every student has to choose $3$ courses out of the remaining $7$ courses. This can be chosen in $^{7} C_{3}$ ways.
Thus, required number of ways of choosing the programme
$=\,^{7} C_{3}=\frac{7 !}{3 ! 4 !}=\frac{7 \times 6 \times 5 \times 4 !}{3 \times 2 \times 1 \times 4 !}=35$
ગણ $A$ ના સભ્યોની સંખ્યા $2n + 1$ હોય તો ઓછામાં ઓછા $n$ સભ્યો હોય તેવા $A$ ના કેટલા ઉપગણો હશે ?
$11$ વાદળી અને બાકીના લાલ હોય તેવા એક સરખા $16$ સમધનોને એક હારમાં ગોઠવવાના છે કે જેથી કોઈ પણ બે લાલ સમઘનની વચ્ચે ઓછામાં ઓછા બે વાદળી સમઘન આવે તો આ ગોઠવણી કેટલી રીતે થઈ શકે ?
$\sum\limits_{1 < \,p < \,100} {p\,!\,\, - \,\sum\limits_{n\, = \,1}^{50} {(2n)\,!} } \,$ નો એક્મનો અંક છે
$BHARAT$ શબ્દનો ઉપયોગ કરી કુલ કેટલા શબ્દો બનાવી શકાય કે જેમાં $B$ અને $H$ એકસાથે ન આવે.
કોઈ શિષ્યવૃતિ માટે મહતમ $n$ ઉમેદવારો કુલ $2n+1$ ઉમેદવારોમાંથી પસંદ કરી શકાય છે જો શિષ્યવૃતિ માટે ઓછામાં ઓછા એક ઉમેદવારને પસંદ કરવાના એવા ભિન્ન $63$ રીતો હોય તો શિષ્યવૃતિ માટે મહતમ કેટલા ઉમેદવારો પસંદ થઈ શકે ?