સમતલમાંનાં $n$ બિંદુઓ પૈકી $p$ બિંદુઓ સમરેખ છે. (બાકીના બિંદુઓમાનાં કોઇપણ ત્રણ બિંદુઓ સમરેખ નથી) બિંદુઓમાંથી પસાર થતી ......રેખાઓ મળે.
$\left( {_2^{n - p}} \right)$
$\left( {_2^n} \right) - \left( {_2^p} \right)$
$\left( {_2^n} \right) - \left( {_2^p} \right) + 1$
$\left( {_2^n} \right) - \left( {_2^p} \right) - 1$
જો $^{n} C_{8}=\,^{n} C_{2}$ હોય, તો $^{n} C_{2}$ શોધો.
શબ્દ $SATAYPAUL$ ના બધા અક્ષરોનો ઉપયોગ કરીને એવા કેટલા શબ્દો મળે કે જેથી બે $A$ સાથે ન આવે અને મધમ અક્ષર વ્યંજન હોય ?
બે પેટી આપેલ છે.જો પેટી $A$ માં ત્રણ ભિન્ન લાલ દડા છે અને પેટી $B$ માં નવ ભિન્ન વાદળી દડા છે.જો દરેક પેટીમાંથી બે દડા પસંદ કરી ને બીજામાં મૂકવામાં આવે તો આ ફેરબદલી . . . . રીતે થઇ શકે.
$25$ વિદ્યાર્થીઓના વર્ગમાં $10$ વિદ્યાર્થીઓને પર્યટન પર લઈ જવા માટે પસંદ કરવાના છે. ત્રણ વિદ્યાર્થીઓએ એવું નક્કી કર્યું કે કાં તો એ ત્રણેય પર્યટન પર જશે અથવા ત્રણેયમાંથી કોઈ નહિ જાય. પર્યટન પર લઈ જવા માટે વિદ્યાર્થીઓને કેટલા પ્રકારે પસંદ કરી શકાય ?
જો ${ }^{n-1} C_r=\left(k^2-8\right){ }^n C_{r+1}$ તો અને તો જ