જો સમીકરણ $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ ને ચાર વાસ્તવિક બીજ $\alpha,\beta,\gamma,\delta$ હોય તો, $a$ અને $b$ ની કિંમત ......હશે.
$- 6, - 4$
$- 6, 5$
$- 6, 4$
$6, - 4$
$'K'$ ની કેટલી ધન પૂર્ણાક કિમતો મળે કે જેથી સમીકરણ $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ ને બરાબર ત્રણ વાસ્તવિક ઉકેલો મળે છે ?
જો $x$ એ સમીકરણ $\sqrt {2x + 1} - \sqrt {2x - 1} = 1, \left( {x \ge \frac{1}{2}} \right)$ નો ઉકેલ હોય તો $\sqrt {4{x^2} - 1} $ ની કિમત મેળવો.
જો $x$ એ વાસ્તવિક હોય તો વિધેેય $\frac{{(x - a)(x - b)}}{{(x - c)}}$ એ બધીજ વાસ્તવિક કિંમતો ધારણ કરી શકે છે જે . . . શરત આપવમાં આવે .
જો $a, b, c$ એ ત્રિકોણની ત્રણ બાજુઓ છે. જે $\left(a^2+\right.$ $\left.b^2\right) x^2-2 b(a+c) \cdot x+\left(b^2+c^2\right)=0$ નું સમાધાન કરે છે. જો $x$ ના શક્ય ઉકેલોનો ગણ $(\alpha, \beta)$ છે. તો $12\left(\alpha^2+\beta^2\right)=$............................
જો $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5,\,$ તો $\,\,{\rm{x = \ldots }}..{\rm{ }}$