- Home
- Standard 11
- Mathematics
જો સમીકરણ $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ ને ચાર વાસ્તવિક બીજ $\alpha,\beta,\gamma,\delta$ હોય તો, $a$ અને $b$ ની કિંમત ......હશે.
$- 6, - 4$
$- 6, 5$
$- 6, 4$
$6, - 4$
Solution
ધારો કે, વાસ્તવિક બીજ $\alpha,\beta,\gamma,\delta$, હોય તો, સમીકરણ $(x – \alpha) (x – \beta) (x – \gamma) (x -\delta ) = 0$
${x^4} – (\alpha + \beta + \gamma + \delta ){x^3} + (\alpha \beta + \beta \gamma + \gamma \delta $
$ + \alpha \delta + \beta \delta + \alpha \gamma ){x^2} – (\alpha \beta \gamma + \beta \gamma \delta $
$ + \alpha \beta \delta + \alpha \gamma \delta )x + \alpha \beta \gamma \delta = 0$
${x^4} – \sum \alpha .{x^3} + \sum \alpha \beta .{x^2} – \sum \alpha \beta \gamma .x + \alpha \beta \gamma \delta = 0$
${x^4} – 4{x^3} + a{x^2} + bx + 1 = 0$ સાથે સરખાવતા,
$\sum \alpha = 4,\,\sum \alpha \beta \, = a,\,\sum \alpha \beta \gamma = – b,\,\alpha \beta \gamma \delta = 1$
વાસ્તવિક બીજ માટે, $A.M. \geq G.M.$
$\frac{1}{4}(\sum \alpha ) \ge {(\alpha \beta \gamma \delta )^{1/4}};\,$ $\sum \alpha = 4$
$\therefore \,\,\frac{1}{4}\sum \alpha = \frac{1}{4} \times 4 = 1$
${(\alpha \beta \gamma \delta )^{1/4}} = 1 \Rightarrow \,\,\alpha \beta \gamma \delta = 1$
$\Sigma \alpha = 4$ અને $\alpha \beta \gamma \delta = 1$
$\therefore \,\,\alpha = \beta = \gamma = \delta \,\, = \,\,1$
હવે $,\,\sum \alpha \beta = a$
$\therefore a = \alpha \beta + \beta \gamma + \gamma \delta + \alpha \delta + \beta \delta + \alpha \gamma $
$ = 1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1\,\, = \,\,6$
$ – b = \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta $
$ = 1 \times 1 \times 1 + 1 \times 1 \times 1 + 1 \times 1 \times 1 + 1 \times 1 \times 1$
$ = {(1)^3} + {(1)^3} + {(1)^3} + {(1)^3}$
$ = 1 + 1 + 1 + 1 = 4$
$\therefore \,b = – 4\,;\,$
$\therefore a = 6\,$ અને $b\,\, = \,\, – 4$