જો ${x^2} + px + 1$ એ સમીકરણ $a{x^3} + bx + c$ નો એક અવયવ હોય તો

  • [IIT 1980]
  • A

    ${a^2} + {c^2} =  - ab$

  • B

    ${a^2} - {c^2} =  - ab$

  • C

    ${a^2} - {c^2} = ab$

  • D

    એકપણ નહી.

Similar Questions

જો ${\rm{x}}$ બરાબર શું  થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$

જો $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ અને $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, હોય તો $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ .......... માટે શકય છે 

અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો  $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો  $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.

  • [JEE MAIN 2022]

સમીકરણ ${\left( {\frac{5}{7}} \right)^x}\, = \, - {x^2} + 2x\, - \,3$ વાસ્તવિક ઉકેલોની સંખ્યા કેટલી હોય ?

ધારોકે $p$ અને $q$ બે એવી વાસ્તવિક સંખ્યાઓ છે કે જેથી $p+q=3$ અને $p^{4}+q^{4}=369$. તો $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}=$

  • [JEE MAIN 2022]