4-2.Quadratic Equations and Inequations
hard

જો ${x^2} + px + 1$ એ સમીકરણ $a{x^3} + bx + c$ નો એક અવયવ હોય તો

A

${a^2} + {c^2} =  - ab$

B

${a^2} - {c^2} =  - ab$

C

${a^2} - {c^2} = ab$

D

એકપણ નહી.

(IIT-1980)

Solution

(c) Given that ${x^2} + px + 1$is factor of $a{x^3} + bx + c = 0$,

then let $a{x^3} + bx + c \equiv ({x^2} + px + 1)(ax + \lambda )$, where $\lambda $ is a constant. Then equating the coefficient of like powers of $x$ on both sides, we get

$0 = ap + \lambda ,\;\;b = p\lambda + a,\;c = \lambda $

$ \Rightarrow p = – \frac{\lambda }{a} = – \frac{c}{a}$

Hence $b = \left( { – \frac{c}{a}} \right)\,c + a$ or $ab = {a^2} – {c^2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.