જો $A$ અને $B$ એ કોઈ ઘટનાઓ હોય તો, તેમાંથી ફક્ત એક જ ઘટના બનવાની શક્યતા કેટલી?
$P (A) + P(B)- P (A \cap B)$
$P (A) + P (B)- 2P (A \cap B)$
$P (A) + P (B)- P (A \cup B)$
$P (A) + P (B)- 2P (A \cup B)$
જો $E$ અને $F$ બે સ્વત્રંત ઘટનાઓ છે . ઘટના $E$ અને $F$ બંને બને તેની સંભાવના $\frac{1}{{12}}$ અને બંને $E$ કે $F$ પૈકી એકપણ ન બને તેની સંભાવના $\frac{1}{2},$ તો . . .
જો $A$ અને $B$ એ સ્વતંત્ર ઘટના છે કે જેથી $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} $ થાય છે. તો $\mathrm{p}$ ની મહતમ કિમંત મેળવો કે જેથી $\mathrm{P}$ ($\mathrm{A}, \mathrm{B}$ પૈકી એક્જ ઘટના ઉદભવે $)=\frac{5}{9}$ .
એક પાસાને ફેંકવામાં આવે છે. જો ઘટના $E$ એ પાસા પર મળતી સંખ્યા $3$ નો ગુણિત છે' અને ઘટના -$F$ ‘પાસા પર મળતી સંખ્યા યુગ્મ છે', તો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ છે કે નહિ તે નક્કી કરો.
$52$ પત્તામાંથી એક પત્તુ યાદચ્છિક પસંદ કરતાં તે પત્તું રાજા હોય કે ચોકટનું હોય તેની સંભાવના $…….. $છે.
વિર્ધાર્થીંને પ્રથમ, દ્વિતીય કે તૃત્તીય ગ્રેડમાં પાસ થાય કે ઘટનાઓ $A, B$ અને $C$ ની સંભાવનાઓ અનક્રમે $1/10, 3/5$ અને $1/4$ હોય, તો તે નાપાસ (ચોથા ગ્રેડ) થાય તેની સંભાવના ……. છે.