$52$ પત્તામાંથી એક પત્તુ યાદચ્છિક પસંદ કરતાં તે પત્તું રાજા હોય કે ચોકટનું હોય તેની સંભાવના $…….. $છે.
$\frac{1}{{26}}$
$\frac{3}{{26}}$
$\frac{4}{{13}}$
$\frac{3}{{13}}$
ધારો કે $A, B, C $ જોડયુક્ત રીતે નિરપેક્ષ ઘટના હોય, જ્યાં $P(C)>0$ અને
$P(A \cap B \cap C)=0 $ હોય, તો $P(A' \cap B'|C) $ બરાબર શું થાય ?
એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NCC$ અને $NSS$ માંથી એક પણ પસંદ કર્યા નથી.
$P(A)=\frac{3}{5}$ અને $P(B)=\frac{1}{5}$ આપેલ છે. જો $A$ અને $B$ પરસ્પર નિવારક ઘટનાઓ હોય તો $P(A$ અથવા $B$) શોધો.
જો $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}\,$ અને$P(A \cap B) = \frac{7}{{12}},$ , તો તેની કિમત $P\,(A' \cap B') = ........$
કોઇ બે નિરપેક્ષ ઘટનાઓ ${E_1}$ અને ${E_2},$ માટે $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ એ