ધારો કે, $A, B, C$ એ $3$ નિરપેક્ષ ઘટનાઓ એવી છે કે જેથી $P(A)\,\, = \,\,\frac{1}{3}\,,\,\,P(B)\,\, = \,\,\frac{1}{2}\,,\,\,P(C)\,\, = \,\,\frac{1}{4}\,.$ $3$ ઘટનાઓ પૈકી ચોક્કસ $2$ ઘટનાઓ બનવાની સંભાવના શોધો.
એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NCC$ અથવા $NSS$ ને પસંદ કર્યા છે.
જો $A$ અને $B$ બે ઘટનાઓ છે કે જેથી $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, તો આપેલ પૈકી કયું વિધાન અસત્ય છે .
એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે ,લાલ રંગની અથવા ભૂરા રંગની હોય તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.
જો $\,P(A\, \cup \,\,B)\,\, = \,\,\frac{2}{3}\,,\,\,P(A\,\, \cap \,\,B)\,\, = \,\,\frac{1}{6}\,\,$ અને $\,\,P(A)\,\, = \,\,\frac{1}{3}$ હોય