14.Probability
medium

જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.

Option A
Option B
Option C
Option D

Solution

since $\mathrm{E}$ and $\mathrm{F}$ are independent, we have

$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$       ……… $(1)$

From the venn diagram in Fig it is clear that $E \cap \mathrm{F}$ and $\mathrm{E} \cap \mathrm{F}^{\prime}$ are mutually exclusive events and also $\mathrm{E}=(\mathrm{E} \cap \mathrm{F}) \cup\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)$

Therefore        $\quad P(E)=P(E \cap F)+P\left(E \cap F^{\prime}\right)$

or                   $P\left(E \cap F^{\prime}\right)=P(E)-P(E \cap F)$

                    $=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$    (by $(1))$

                   $=\mathrm{P}(\mathrm{E})(1-\mathrm{P}(\mathrm{F}))$

                   $=\mathrm{P}(\mathrm{E})$ . $\mathrm{P}\left(\mathrm{F}^{\prime}\right)$

Hence, $\mathrm{E}$ and $\mathrm{F}^{\prime}$ are independent

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.