જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.
since $\mathrm{E}$ and $\mathrm{F}$ are independent, we have
$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$ ......... $(1)$
From the venn diagram in Fig it is clear that $E \cap \mathrm{F}$ and $\mathrm{E} \cap \mathrm{F}^{\prime}$ are mutually exclusive events and also $\mathrm{E}=(\mathrm{E} \cap \mathrm{F}) \cup\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)$
Therefore $\quad P(E)=P(E \cap F)+P\left(E \cap F^{\prime}\right)$
or $P\left(E \cap F^{\prime}\right)=P(E)-P(E \cap F)$
$=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$ (by $(1))$
$=\mathrm{P}(\mathrm{E})(1-\mathrm{P}(\mathrm{F}))$
$=\mathrm{P}(\mathrm{E})$ . $\mathrm{P}\left(\mathrm{F}^{\prime}\right)$
Hence, $\mathrm{E}$ and $\mathrm{F}^{\prime}$ are independent
જો $E$ અને $F$ બે સ્વત્રંત ઘટનાઓ છે . ઘટના $E$ અને $F$ બંને બને તેની સંભાવના $\frac{1}{{12}}$ અને બંને $E$ કે $F$ પૈકી એકપણ ન બને તેની સંભાવના $\frac{1}{2},$ તો . . .
જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
ચાર વ્યક્તિઓ ટાર્ગેટને તાકી શકે તેની સંભાવના અનુક્રમે $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ અને $\frac {1}{8}$ છે. જો બધા સ્વતંત્ર રીતે ટાર્ગેટને તકવાનો પ્રયત્ન કરે છે તો ટાર્ગેટ ને તાકી શકાય તેની સંભાવના મેળવો.
એક છાત્રાલયમાં $60\%$ વિદ્યાર્થીઓ હિન્દી સમાચારપત્ર વાંચે છે, $40\%$ અંગ્રેજી સમાચારપત્ર વાંચે છે અને $20\%$ હિન્દી અને અંગ્રેજી બંને સમાચારપત્ર વાંચે છે. એક વિદ્યાર્થી યાદૈચ્છિક રીતે પસંદ કરવામાં આવ્યો.જો તે હિન્દી સમાચારપત્ર વાંચતો હોય, તો તે અંગ્રેજી સમાચારપત્ર વાંચે છે તેની સંભાવના શોધો.