English
Hindi
14.Probability
medium

એક પાકીટ $4$ તાંબાના અને $3$ ચાંદીના સિક્કા ધરાવે છે. બીજુ પાકીટ $6$ તાંબાના અને  $2$ ચાંદીના સિક્કા ધરાવે છે. આ બે પાકીટ પૈકી કોઈ પણ એકમાંથી એક સિક્કો લેવામાં આવે, તો તે તાંબાનો હોવાથી સંભાવના કેટલી થાય ?

A

$4/7$

B

$3/4$

C

$2/7$

D

$37/56$

Solution

ધારો કે પહેલું પાકીટ પસંદ કરવાની ઘટના $= A$

બીજુ પાકીટ પસંદ કરવાની ઘટના $= B$

પહેલા પાકીટમાંથી તાંબાનો સિક્કો લેવાની ઘટના $= C$

બીજા પાકીટમાંથી તાંબાનો સિક્કો લેવાની ઘટના $= D$

તો આપેલ ઘટના બે અલગ કિસ્સા $:$ $ AC$ અને $BD$ ધરાવે છે.

માંગેલ સંભાવના $ = \,\,P(AC\,\, + \,\,BD)\,\, = \,\,P(AC)\,\, + \,\,P(BD)\,\,$

$ = \,\,P(A)\,P(C)\,\, + \,\,P(B)\,P(D)$

$\, = \,\,\frac{1}{2}.\frac{4}{7}\, + \,\frac{1}{2}.\frac{6}{8}\, = \,\,\frac{{37}}{{56}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.