$A$ અને $B$ એ $12$ રમતો રમે છે. $A$ એ $6$ વાર જીતે છે. $B$ એ $4$ વાર જીતે છે અને બે વાર ડ્રો થાય છે. $A$ અને $B$ એ $3$ રમતની શ્રેણીમાં ભાગ લે છે, તો તેઓ વારાફરથી જીતવાની સંભાવના કેટલી થાય ?
$5/72$
$5/36$
$19/27$
આપેલ પૈકી એક પણ નહિં
એન્ટી એરક્રાફટ ગન વડે દુશ્મનના વિમાનો પહેલાં, બીજા અને ત્રીજા પ્રહાર વડે તોડી પાડવાની સંભાવના અનુક્રમે $0.6, 0.7$ અને $0.1$ છે. તો ગન વડે વિમાનને તોડી પાડવાની સંભાવના કેટલી થાય ?
નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.4.$
$P(A \cap B)$ શોધો
એક વિદ્યાર્થીની અંતિમ પરીક્ષાના અંગ્રેજી અને હિંદી બન્ને વિષયો પાસ કરવાની સંભાવના $0.5$ છે અને બંનેમાંથી કોઈ પણ વિષય પાસ ન કરવાની સંભાવના $0.1$ છે. જો અંગ્રેજીની પરીક્ષા પાસ કરવાની સંભાવના $0.75$ હોય, તો હિંદીની પરીક્ષા પાસ કરવાની સંભાવના શું છે?
એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે ,લાલ રંગની અથવા ભૂરા રંગની હોય તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.
ઘટના ${\text{A, B}}$ છે $P(A \cup B)\,\, = \,\,\frac{3}{4},\,P(A \cap B)\,\, = \,\,\frac{1}{4},\,P(A')\,\, = \,\,\frac{2}{3}$ તો ${\text{P (A' }} \cap {\text{ B)}} = ......$