$A$ અને $B$ એ  $12$ રમતો રમે છે.  $A$ એ $6$ વાર જીતે છે. $B$ એ  $4$ વાર જીતે છે અને બે વાર ડ્રો થાય છે. $A$ અને $B$ એ  $3$ રમતની શ્રેણીમાં ભાગ લે છે, તો તેઓ વારાફરથી જીતવાની સંભાવના કેટલી થાય ?

  • A

    $5/72$

  • B

    $5/36$

  • C

    $19/27$

  • D

    આપેલ પૈકી એક પણ નહિં

Similar Questions

જો $A$ અને $B$ એ કોઈ ઘટનાઓ હોય તો, તેમાંથી ફક્ત એક જ ઘટના બનવાની શક્યતા કેટલી?

એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના $A$, ‘પ્રથમ પ્રયત્ન અયુગ્મ સંખ્યા મળે” અને ઘટના $B$, “બીજા પ્રયત્ન અયુગ્મ સંખ્યા મળે તેમ હોય, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે કેમ તે ચકાસો. 

એક થેલામાં $4$ લાલ, $5$ સફેદ અને $6$ કાળા દડા છે. ત્રણ દડા યાર્દચ્છિક રીતે પસંદ કરવામાં આવે, તો તેઓ ભિન્ન રંગના હોવાથી સંભાવના કેટલી થાય ?

નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.4.$  

$P(A \cap B)$ શોધો

જો $A$ અને $B$ બે ઘટનાઓ છે કે જેથી  $P\,(A \cup B) = P\,(A \cap B),$ તો સાચો સંબંધ મેળવો.

  • [IIT 1998]