જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો.
$0.1$
$0.2$
$0.3$
$0.5$
એક અસમતોલ સિક્કો ઉછાળવામાં આવે છે.જો છાપ આવે તો બે અસમતોલ પાસાને ઉછાળીને તેના પરના અંકોનેા સરવાળો નોધવામાં આવે છે.અને જો કાંટો આવે તો સરખી રીતે છીપેલાં $11$ પત્તાં કે જેની પર $2,3,4,…,12$ અંકો લખેલો છે તેમાંથી એક પત્તું પસંદ કરવામાં આવે છે અને તેના પરનો અંક નોંધવામાં આવે છે.તો નોધાયેલી સંખ્યા $7$ અથવા $8$ હોય,તેની સંભાવના મેળવો.
એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NCC$ અને $NSS$ માંથી એક પણ પસંદ કર્યા નથી.
નારંગીના ખોખામાંથી યાચ્છિક રીતે પુરવણી વગર ત્રણ નારંગી પસંદ કરીને તે ખોખાને તપાસવામાં આવે છે. જો તમામ ત્રણ નારંગીઓ સારી હોય, તો ખોખાના વેચાણ માટે સ્વીકાર કરાય છે, અન્યથા તેનો અસ્વીકાર કરવામાં આવે છે. જો ખોખામાં સમાવિષ્ટ $15$ નારંગી પૈકી $12$ સારી અને $3$ ખરાબ હોય, તો તેને વેચાણ માટે મંજૂરી મળે તેની સંભાવના શોધો.
ઘટનાઓ $A$ અને $B$ એવા પ્રકારની છે કે $P(A) = 0.42, P(B) = 0.48$ અને $P(A$ અને $B) = 0.16$.$ P(A-$ નહિ) શોધો.
જો $A$ અને $B$ એ ઘટના છે,તો બંને માંથી કોઇ એકજ ઉદ્રભવે તેની સંભાવના મેળવો.