જો $A$ ને પરીક્ષામાં નાપાસ થવાની સંભાવના $1/5$ છે અને $B$ ની સંભાવના $3/10$ છે. તો $A$ અથવા $B$ ને નાપાસ થવાની સંભાવના કેટલી થાય ?
$1/2$
$11/25$
$19/50$
આપેલ પૈકી એક પણ નહિં
અહી $S=\{1,2,3, \ldots, 2022\}$ છે. તો યાર્દચ્છિક સંખ્યા $n$ ને ગણ $S$ માંથી પસંદ કરવામાં આવે તેની સંભાવના મેળવો કે જેથી $\operatorname{HCF}( n , 2022)=1$ થાય.
$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો સવાલનો ઉકેલ મળે
$A , B, C$ try to hit a target simultaneously but independently. Their respective probabilities of hitting targets are $\frac{3}{4},\frac{1}{2},\frac{5}{8}$. The probability that the target is hit by $A$ or $B$ but not by $C$ is
ત્રણ ઘટનાઓ $A,B $ અને $C$ માટે $P(A $ અથવા $B$ માંથી ફકત એક બને) $ = P(B$ અથવા $C$ માંથી ફકત એક બને $)= P( A$ અથવા $C$ માંથી ફકત એક બને) =$\;\frac{1}{4}$ તથા $P$ (તમામ ત્રણેય ઘટનાઓ એક સાથે બને) = $\frac{1}{{16}}$ તો ઓછામાં ઓછી એક ઘટના બને તેની સંભાવના . . . છે. .
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |