બે પાસા સ્વતંત્ર રીતે ઉછાળવામાં આવે છે. ધારો કે પહેલા પાસા પર આવેલ સંખ્યા એ બીજ પાસા પર આવેલ સંંખ્યાથી નાની હોય તે ઘટના $A$ છે, તથા પ્રથમ પાસા ૫ર યુગ્મ સંખ્યા આવે અને બીજા પાસા પર અયુગ્મ સંખ્યા આવે તે ઘટના $B$ છે.વધુમાં ધારોકે પ્રથમ પાસા પર અયુગ્મ સંખ્યા આવે અને બીજા પાસા પર યુગ્મ સંખ્યા આવે તે ઘટના $C$ છે.તો,:
ઘટના $(A \cup B) \cap C$ ને અનુરૂપ બનાવોની સંખ્યા $6$ છે.
$A$ અને $B$ પરસ્પર નિવારક ઘટનાઓ છે.
ઘટનાઓ $A , B$ અને $C$ ને અનુરૂપ બનાવોની સંખ્યા અનુક્રમે $15,6$ અને $6$ છે.
$B$ અને $C$ નિરપેક્ષ ઘટનાઓ છે.
ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ અને $P (A -$ નહી અથવા $B-$ નહી $) =$ $\frac {1}{4}$. $A$ અને $B$ નિરપેક્ષ છે કે નહિ ?
જો $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}\,$ અને$P(A \cap B) = \frac{7}{{12}},$ , તો તેની કિમત $P\,(A' \cap B') = ........$
ત્રણ વ્યક્તિ $P, Q$ અને $R$ એ સ્વતંત્ર રીતે એક નિશાન તકે છે . જો તેઓ નિશાન તાકી શકે તેની સંભાવના અનુક્રમે $\frac{3}{4},\frac{1}{2}$ અને $\frac{5}{8}$ હોય તો $P$ અથવા $Q$ નિશાન તાકી શકે પરંતુ $R$ તાકી ન શકે તેની સંભાવના મેળવો.
વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ $A$ અને $B$ ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :
$P(A$ નિષ્ફળ જાય) $= 0.2$
$P$ (ફક્ત $B$ નિષ્ફળ જાય) $= 0.15$
$P(A $ અને $B$ નિષ્ફળ જાય) $= 0.15$
નીચેની સંભાવનાઓ શોધો :
$P(A $ એકલી નિષ્ફળ જાય)
બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : બંનેમાંથી ઓછામાં ઓછી એક વ્યક્તિ પરીક્ષામાં પાસ નહિ થાય.