જો $\,P(A\, \cup \,\,B)\,\, = \,\,\frac{2}{3}\,,\,\,P(A\,\, \cap \,\,B)\,\, = \,\,\frac{1}{6}\,\,$ અને $\,\,P(A)\,\, = \,\,\frac{1}{3}$ હોય
$A$ અને $B$ નિરપેક્ષ ઘટનાઓ છે
$A$ અને $B$ અલગ ઘટનાઓ છે
$A$ અને $B$ સાપેક્ષ ઘટનાઓ છે
ઉપર આપેલ એક પણ નહિં
ત્રણ અલગ અલગ ઘટનાઓ બનવાની સંભાવના $p_1 , p_2 , p_3$ છે તો તે પૈકી ઓછામાં ઓછી એક ઘટના બનવાની સંભાવના કેટલી થાય ?
જો $A$ અને $B$ એ ઘટના છે,તો બંને માંથી કોઇ એકજ ઉદ્રભવે તેની સંભાવના મેળવો.
જો $A$ અને $B$ એ કોઈ ઘટનાઓ હોય તો, તેમાંથી ફક્ત એક જ ઘટના બનવાની શક્યતા કેટલી?
આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ નહિ અને $B$ નહિ) શોધો.
$A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના બનવાની સંભાવના $0.6$ છે. જો $A$ અને $B$ એક સાથે બનવાની સંભાવના $0.3$, હોય તો $P (A') + P (B') = ……$