આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ અને $B)$ શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(A)=0.3,\,P(B)=0.6$..

Also, $A$ and $B$ are independent events.

$\mathrm{P}(\mathrm{A}$ and  $\mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

$\Rightarrow  $ $ \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.3 \times 0.6=0.18$

Similar Questions

ત્રણ ઘટનાઓ  $A, B$ અને $C,$ માટે $P($  માત્ર એકજ ઘટના $A$ અથવા $B$ બને $) = P \,($ માત્ર $B$ અથવા $C$ એક્જ બને $)= P \,($ માત્ર $C$ અથવા $A$ એકજ બને $)= p$ અને $P$ (ત્રણેય ઘટનાઓ એક્જ સાથે બને $)  = {p^2},$ કે જ્યાં  $0 < p < 1/2$. તો ત્રણેય ઘટનાઓ $A, B$ અને $C$ પૈકી ઓછામાં ઓછી એક્જ ઘટના બને તેની સંભાવના મેળવો.

  • [IIT 1996]

એક થેલામાં $4$ લાલ અને $3$ વાદળી દડા છે.  બે દડા વારાફરતી  લેવામાં આવે છે. જો બીજો દડો લઈએ તે પહેલા, પહેલો દડો મૂકવામાં આવે તો પહેલા બે દડા લાલ અને બીજા બે દડા વાદળી હોવાની સંભાવના કેટલી થાય ?

ચાર વ્યક્તિઓ ટાર્ગેટને તાકી શકે તેની સંભાવના અનુક્રમે $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ અને  $\frac {1}{8}$ છે. જો બધા સ્વતંત્ર રીતે ટાર્ગેટને તકવાનો પ્રયત્ન કરે છે તો ટાર્ગેટ ને તાકી શકાય તેની સંભાવના મેળવો.

  • [JEE MAIN 2019]

ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .

  • [AIEEE 2005]

ત્રણ ઘટનાઓ $A , B$ અને $C$ ની સંભાવના અનુક્રમે $P ( A )=0.6, P ( B )=0.4$ અને $P ( C )=0.5$ આપેલ છે જો $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ અને $P(A \cup B \cup C)=\alpha$ જ્યાં $0.85 \leq \alpha \leq 0.95,$ હોય તો $\beta$ ની કિમત ........ અંતરાલમાં રહે છે 

  • [JEE MAIN 2020]