$53$ રવિવાર અને $53$ સોમવાર ધરાવતા વર્ષોમાથી કોઈપણ પસંદ કરતાં, તે લીપ વર્ષ બનવાની સંભાવના કેટલી?
$\frac{2}{7}$
$\frac{4}{7}$
$\frac{3}{7}$
$\frac{1}{7}$
આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ અથવા $B)$ શોધો.
જો $E$ અને $F$ બે સ્વત્રંત ઘટનાઓ છે . ઘટના $E$ અને $F$ બંને બને તેની સંભાવના $\frac{1}{{12}}$ અને બંને $E$ કે $F$ પૈકી એકપણ ન બને તેની સંભાવના $\frac{1}{2},$ તો . . .
જો $A, B, C$ એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે $P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$
એક પાસાઓ એ રીતે છે કે જેથી દરેક અયુગ્મ સંખ્યા આવવાની સંભાવના એ યુગ્મ આવવાની સંભાવના કરતા બમણી છે જો ઘટના $E$ એ એકવાર ફેંકવાથી મળતી સંખ્યા $4$ કે તેનાથી વધારે આવે તેની સંભાવના $P(E)$ મેળવો.
નીચેના પૈકી .......... વિકલ્પ માટે ઘટનાઓ $A$ અને $B$ નિરપેક્ષ થશે :