વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ $A$ અને $B$ ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :
$P(A$ નિષ્ફળ જાય) $= 0.2$
$P$ (ફક્ત $B$ નિષ્ફળ જાય) $= 0.15$
$P(A $ અને $B$ નિષ્ફળ જાય) $= 0.15$
નીચેની સંભાવનાઓ શોધો :
$P(A $ એકલી નિષ્ફળ જાય)
Let the event in which $A$ fails and $B $ fails be denote by $E_{A}$ and $E_{B}$.
$P\left(E_{A}\right)=0.2$
$\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)=0.15$
$\mathrm{P}(\mathrm{B} \text { fails alone })=\mathrm{P}\left(\mathrm{E}_{\mathrm{B}}\right)-\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)$
$\therefore $ $ 0.15=P\left(E_{B}\right)-0.15$
$\therefore $ $ \mathrm{P}\left(\mathrm{E}_{\mathrm{B}}\right)=0.3$
$\mathrm{P}$ $(A$ fails alone $)$ $=\mathrm{P}\left(\mathrm{E}_{\mathrm{A}}\right)-\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)$
$=0.2-0.15$
$=0.05$
જો $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}\,$ અને$P(A \cap B) = \frac{7}{{12}},$ , તો તેની કિમત $P\,(A' \cap B') = ........$
ચકાસો કે નીચેની સંભાવનાઓ $P(A)$ અને $P(B)$ સુસંગત રીતે વ્યાખ્યાયિત છે.
$P ( A )=0.5$, $ P ( B )=0.7$, $P ( A \cap B )=0.6$
$52$ પત્તા પૈકી યાર્દચ્છિક રીતે એક પત્તુ પસંદ કરતા તે પૈકી રાજા અથવા કાળીનું પત્તુ હોવાની સંભાવના કેટલી થાય ?
એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NCC$ અને $NSS$ માંથી એક પણ પસંદ કર્યા નથી.
બે વિમાન $ I $ અને $ II$ એ ર્ટાગેટ પર બોમ્બ નાખવાના છે. વિમાન $ I$ અને $ II $ ની ર્ટાગેટ પર બોમ્બ લાગે તેની સંભાવના અનુક્રમે $0.3$ અને $0.2 $ છે. બીજુ વિમાન તોજ બોમ્બ ફેકંશે જો પહેલુ વિમાન ચુકી જશે, તો ર્ટાગેટને બીજા વિમાન વડે બોમ્બ લાગે તેની સંભાવના મેળવો.