- Home
- Standard 11
- Mathematics
નીચે આપેલ આવૃત્તિ વિતરણનું વિચરણ શોધો.
$class$ |
$0 - 2$ |
$2 - 4$ |
$4 - 6$ |
$6 - 8$ |
$8 - 10$ |
$10 - 12$ |
$f_i$ |
$2$ |
$7$ |
$12$ |
$19$ |
$9$ |
$ 1$ |
$1.5$
$2$
$3.5$
$4.97$
Solution
ધારો કે $= 7, h = 2$
$class$ |
$x_i$ |
$f_i$ |
$u_i = (x_i – a)/h$ |
$f_iu_i$ |
${f_i}u_i^2$ |
$0 – 2$ |
$1$ |
$2$ |
$-3$ |
$-6$ |
$18$ |
$2 – 4$ |
$3$ |
$7$ |
$-2$ |
$-14$ |
$28$ |
$4 – 6$ |
$5$ |
$12$ |
$-1$ |
$-12$ |
$12$ |
$6 – 84$ |
$7$ |
$19$ |
$0$ |
$0$ |
$0$ |
$8 – 10$ |
$9$ |
$9$ |
$1$ |
$9$ |
$9$ |
$10 – 12$ |
$11$ |
$1$ |
$2$ |
$2$ |
$4$ |
$N = 50$ |
$\sum f-iu_I = -21$ |
$\sum f_iu_i^2 = 71$ |
$\therefore \,{\sigma ^2}\, =\,{h^2}\,\left[ {\frac{{\Sigma {f_i}{u_i}^2}}{N}\, – \,{{\left( {\frac{{\Sigma {f_i}{u_i}}}{N}} \right)}^2}} \right]$
$ = 4\,\left[ {\frac{{71}}{{50}}\, – \,{{\left( {\frac{{ – 21}}{{50}}} \right)}^2}} \right]\, = \,4[1.42 – 0.1764] = 4.97$
Similar Questions
નીચે આપેલ વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલનની ગણતરી કરો :
વર્ગ |
$30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |