- Home
- Standard 11
- Mathematics
13.Statistics
hard
જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.
A
$12$
B
$11$
C
$14$
D
$21$
(JEE MAIN-2021)
Solution
$\sigma^{2}=\frac{\Sigma x ^{2}}{ n }-\left(\frac{\Sigma x }{ n }\right)^{2}$
$=\frac{9+ k ^{2}}{10}-\left(\frac{9+ k }{10}\right)^{2}<10$
$90+10 k^{2}-81-k^{2}-18 k < 1000$
$9 k ^{2}-18 k -991 < 0$
$k^{2}-2 k < \frac{991}{9}$
$( k -1)^{2} < \frac{1000}{9}$
$\frac{-10 \sqrt{10}}{3} < k -1 < \frac{10 \sqrt{10}}{3}$
$k < \frac{10 \sqrt{10}}{3}+1$
$k \leq 11$
Maximum value of $k$ is $11 .$
Standard 11
Mathematics
Similar Questions
જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |