પ્રથમ $n$ પ્રાકૃતિક સંખ્યાઓનું પ્રમાણિત વિચલન = ………
$\sqrt {\frac{{{n^2}\, - \,\,1}}{2}} $
$\sqrt {\frac{{{n^2}\, - \,\,1}}{3}} $
$\sqrt {\frac{{{n^2}\, - \,\,1}}{4}} $
$\sqrt {\frac{{{n^2}\, - \,\,1}}{{12}}} $
નીચે આપેલ માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન શોધો :
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે.
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=.......$
$8, 12, 13, 15,22$ અવલોકનોનું વિચરણ :
ત્રણ અવલોકન $a, b$ અને $c$ આપેલ છે કે જેથી $b = a + c $ થાય છે. જો $a +2$ $b +2, c +2$ નું પ્રમાણિત વિચલન $d$ હોય તો આપેલ પૈકી ક્યૂ સત્ય છે $?$
એક વર્ગના $10$ વિધ્યાર્થીઓના સરેરાશ ગુણ $60$ અને પ્રમાણિત વિચલન $4$ છે જ્યારે બીજા દસ વિધ્યાર્થીઓના સરેરાશ ગુણ $40$ અને પ્રમાણિત વિચલન $6$ છે જો બધા $20$ વિધ્યાર્થીઓને સાથે લેવામાં આવે તો પ્રમાણિત વિચલન મેળવો.