વિધાન $- 1$  : પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{3}$છે.

વિધાન $- 2$  : પ્રથમ $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $n^2$  છે અને પ્રથમ  $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(4{n^2}\, + \,\,1)}}{3}$છે.

  • A

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$  સાચું છે. વિધાન $- 2$  એ વિધાન $- 1 $ ની સાચી સમજૂતી છે.

  • B

    વિધાન $- 1 $ સાચું છે, વિધાન $- 2$  સાચું છે. વિધાન $- 2$  એ વિધાન $ - 1 $  ની સાચી સમજૂતી નથી.

  • C

    વિધાન $- 1$  સાચું છે. વિધાન $ - 2$  ખોટું છે.

  • D

    વિધાન $- 1 $ ખોટું છે. વિધાન $- 2$   સાચું છે.

Similar Questions

જો બે $200$ અને $300$ અવલોકનો ધરાવતા સમૂહોનો મધ્યક અનુક્રમે $25, 10$ અને તેમનો $S.D.$ અનુક્રમે $3$ અને $4$ હોય તો બંને સમૂહોને ભેગા કરતાં $500$ અવલોકનો ધરાવતા નવા સમૂહનો વિચરણ મેળવો. 

પાંચ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $4$ અને $5.20$ છે જો આ અવલોકનોમાંથી ત્રણ અવલોકનો $3, 4$ અને $4$ હોય તો બાકી રહેલા બે અવલોકનોનો તફાવત મેળવો. 

  • [JEE MAIN 2019]

આપેલ માહિતી નો વિચરણ $160$ હોય તો $A$ ની કિમત મેળવો જ્યાં  $A$ એ ધન પૂર્ણાક છે 

$\begin{array}{|l|l|l|l|l|l|l|} \hline X & A & 2 A & 3 A & 4 A & 5 A & 6 A \\ \hline f & 2 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$

એક $x$ પરના પ્રયોગના $15$ અવલોકન છે કે જેથી $\sum {x^2} = 2830$, $\sum x = 170$.જો આપેલ અવલોકનમાંથી અવલોકન $20$ ખોટુ છે અને તેના બદલામાં અવલોકન $30$ લેવામાં આવે છે તો નવી માહિતીનું વિચરણ મેળવો.   

  • [AIEEE 2003]

જો $x_i $ નું પ્રમાણિત વિચલન $10$  હોય તો ($50 + 5x_i$)નું વિચરણ કેટલું હશે ?