ધારોકે $3 n$ સંખ્યાનું વિચરણ $4$ આપેલ છે. જો આ ગણમાં  પ્રથમ $2 n$ સંખ્યાનો મધ્યક $6$ હોય અને બાકીની સંખ્યા $n$ નો મધ્યક $3$ છે. એક નવો ગણ બનાવીએ કે જેમાં પ્રથમ $2 n$ સંખ્યામાં  $1$ ઉમેરીએ અને  પછીની $n$ સંખ્યામાંથી $1$ બાદ કરીયે તો આ નવા ગણનું વિચરણ $k$ હોય તો $9 k$ મેળવો.

  • [JEE MAIN 2021]
  • A

    $76$

  • B

    $68$

  • C

    $82$

  • D

    $56$

Similar Questions

પ્રયોગના $5$  અલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $4 $ અને $5.2$  છે. જો આ અવલોકનો પૈકી ત્રણ $1, 2$ અને $6,$  હોય તો બાકીના અવલોકનો કયા હશે ?

$6$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $8$ અને $4$ છે. જો પ્રત્યેક અવલોકનને $3$ વડે ગુણવામાં આવે, તો પરિણામી અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન શોધો. 

વિધાન $1$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વિચરણ $\frac{{{n^2} - 1}}{3}$ થાય 
વિધાન $2$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો સરવાળો $n^2$ અને પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વર્ગોનો સરવાળો $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$ થાય 

  • [AIEEE 2012]

$x $ ના $15$ અવલોકનોના પ્રયોગમાં $\Sigma$ $x^2 = 2830,$  $\Sigma$ $x = 170 $ આ પરિણામ મળે છે. એક અવલોકન $20$  ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$  મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?

આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.

વર્ગ 

$0-30$ $30-60$ $60-90$ $90-120$ $120-150$ $50-180$ $180-210$

આવૃત્તિ

$2$ $3$ $5$ $10$ $3$ $5$ $2$