- Home
- Standard 11
- Mathematics
$a, a + d, a + 2d, ……, a + 2nd$ શ્રેણીનું વિચરણ શોધો.
$\frac{{n(n\, + \,\,1)}}{2}\,{d^2}$
$\frac{{n(n\, + \,\,1)}}{3}\,{d^2}$
$\frac{{n(n\, + \,\,1)}}{6}{d^2}$
$\frac{{n(n\, + \,\,1)}}{{12}}\,{d^2}$
Solution
આપેલ શ્રેણી $\,a,\,\,a\,\, + \,\,d,\,\,a\,\, + \,\,2d,\,…….\,,\,\,a\,\, + \,\,2nd$
$\bar x\,\, = \,\,\,\frac{{\frac{{(2n\,\, + \,\,1)}}{2}\,[a\,\, + \,\,a\,\, + \,\,2nd]}}{{(2n\,\, + \,\,1)}}\,\,\, = \,\,a\,\, + \,\,nd$
$\Sigma {({x_i}\, – \,\,\bar x)^2}\, = \,\,{n^2}{d^2}\, + \,\,{(1\,\, – \,\,n)^2}{d^2}\, + \,\,…….\,\, + \,\,{d^2}\, + \,\,0\,\, + \,\,{d^2}\, + \,\,…….\,\, + \,\,{n^2}{d^2}$
$ = \,\,2[{n^2}{d^2}\, + \,\,{(n\,\, – \,\,1)^2}{d^2}\, + \,\,……\,\, + \,\,{d^2}]\,\,\,\,\,\,\,\,\,$
$ = \,\,2{d^2}[{n^2}\, + \,\,{(n\,\, – \,1)^2}\, + \,\,……\,\, + \,\,{1^2}]$
$ = \,\,2{d^2}\, \times \,\,\frac{{n(n\,\, + \,\,1)\,(2n\,\, + \,\,1)}}{6}\,\, = \,\,\frac{{n(n\,\, + \,\,1)\,(2n\,\, + \,\,1)}}{3}\,\,{d^2}$
$\therefore \,\,\,Variance\,\, = \,\,\frac{{\Sigma {{({x_i}\, – \,\,\bar x)}^2}}}{{2n\,\, + \,\,1}}\,\, = \,\,\frac{{n(n\,\, + \,\,1)}}{3}\,{d^2}$
Similar Questions
ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે.
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=…….$
આવુતિ વિતરણ
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
નુંવિચરણ જો $160$ હોય તો $\mathrm{c} \in \mathrm{N}$ નું મૂલ્ય ………… છે.