ધારો કે $\mathrm{a}, \mathrm{b}, \mathrm{c} \in {N}$ અને $\mathrm{a}<\mathrm{b}<\mathrm{c}$. ધારો કે $5$ અવલોક્નો $9,25, \mathrm{a}, \mathrm{b}, \mathrm{c}$ ના મધ્યક, મધ્યક સાપેક્ષ સરેરાશ વિચલન અને વિચરણ અનુક્રમે $18,4$ અને $\frac{136}{5}$ છે. તો $2 \mathrm{a}+\mathrm{b}-\mathrm{c}=$............
$39$
$18$
$35$
$33$
આઠ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $9$ અને $9.25$ છે, જો આમાંથી છ અવલોકનો $6, 7, 10, 12, 12$ અને $13$ હોય, તો બાકીનાં બે અવલોકનો શોધો.
જો વિતરણનું દરેક અવલોકન જેનું પ્રમાણિત વિચલન $\sigma$, એ $\lambda$, જેટલું વધતું હોય તો નવા અવલોકનોનું વિચરણ શોધો.
એક $x$ પરના પ્રયોગના $15$ અવલોકન છે કે જેથી $\sum {x^2} = 2830$, $\sum x = 170$.જો આપેલ અવલોકનમાંથી અવલોકન $20$ ખોટુ છે અને તેના બદલામાં અવલોકન $30$ લેવામાં આવે છે તો નવી માહિતીનું વિચરણ મેળવો.
ધોરણ $11$ ના એક સેક્શનમાં વિદ્યાર્થીઓની ઊંચાઈ અને વજન માટે નીચે પ્રમાણે માહિતી મળી છે : શું આપડે કહી શકીએ કે વજનનું વિચરણ ઊંચાઈના વિચરણ કરતાં વધુ છે ?
ઊંચાઈ |
વજન |
|
મધ્યક |
$162.6\,cm$ | $52.36\,kg$ |
વિચરણ | $127.69\,c{m^2}$ | $23.1361\,k{g^2}$ |
$2n$ અવલોકનનો વાળી શ્રેણીમાં તે પૈકી અડધા અવલોકનો $a$ બરાબર અને બાકીના $-a $ છે. જો અવલોકનોનું પ્રમાણિત વિચલન $2$ હોય તો $| a | $ બરાબર શું થાય ?