આપેલ બે વર્તૂળો  $x^2+ y^2 + ax + by + c = 0$  અને $ x^2 + y^2 + dx + ey + f = 0 $ પરસ્પર એકબીજાને લંબરૂપે ક્યારે છેદે ?

  • A

    $ad + be = c + f$

  • B

    $a + b + c = d + e + f$

  • C

    $ad + be = 2c + 2f$

  • D

    $2ad + 2be = c + f$

Similar Questions

આપેલ વિધાન પૈકી બંને વિધાન માટે સત્ય વિધાન પસંદ કરો.

$x^{2}+y^{2}-10 x-10 y+41=0$ અને $x^{2}+y^{2}-16 x-10 y+80=0$

  • [JEE MAIN 2021]

ધારોકે વર્તુળો $C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$ અને $C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$ એકબીજાને $(6,6)$ આગળ બહારથી સ્પર્શ છે. જો બિંદુુ (6, 6) એ, વર્તુળો $C_1$ અને $C_2$ ના કેન્દ્રોને જોડતી રેખાખંડનું $2:1$ ના ગુણોત્તર માં અંદરથી વિભાજન કરે, તો $(\alpha+\beta)+4\left(r_1^2+r_2^2\right)=$ ...........

  • [JEE MAIN 2024]

જો ચલિત રેખા $3x + 4y -\lambda  = 0$ એવી મળે કે જેથી બે વર્તુળો $x^2 + y^2 -2x -2y + 1 = 0$ અને $x^2 + y^2 -18x -2y + 78 = 0$ એ વિરુધ્ધ બાજુએ રહે તો $\lambda $ ની શક્ય કિમતો .............. અંતરાલમાં મળે 

  • [JEE MAIN 2019]

વર્તૂળો $x^2 + y^2 = 4$ અને $x^2 + y^2 + 2x + 4y = 6$ ની જેમ સમાન મૂલાક્ષ ધરાવતા વર્તૂળોના જૂથનું સમીકરણ.....

વર્તૂળો $x^2 + y^2+ 2x - 2y + 1 = 0$ અને $x^2 + y^2- 2x - 2y + 1 = 0$ એકબીજાને ક્યાં આગળ સ્પર્શેં ?