વર્તૂળો $x^2 + y^2 - 2x - 4y = 0$ અને $x^2 + y^2 - 8y - 4 = 0$
એકબીજાને અંદરથી સ્પર્શેં છે.
એકબીજાને બે બિંદુ આગળ છેદે છે.
એકબીજાને બહારથી સ્પર્શેં છે.
એકપણ નહિ
જે વર્તૂળની ત્રિજ્યા $3$ હોય અને જે $x^{2} + y^{2} - 4x - 6y - 12 = 0 $ વર્તૂળને બિંદુ $(-1, -1)$ આગળ અંદરથી સ્પર્શેં તેવા વર્તૂળનું સમીકરણ શોધો.
જો $(4, -2)$ માંથી પસાર થતું વર્તૂળ $x^2 + y^2 + 2gf + 2fy + c = 0$ એ વર્તુળ $x^2 + y^2 -2x + 4y + 20 = 0$ સમકેન્દ્રી હોય,તો $c$ નું મૂલ્ય મેળવો.
વર્તૂળ $x^2 + y^2 = 4$ અને $x^2 + y^2 - 6x - 8y = 24 $ ના સામાન્ય સ્પર્શકોની સંખ્યા ....
જો વર્તુળો ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ અને ${x^2} + {y^2} + 2ky + k = 0$ લંબ્ચ્છેદી હોય તો $k$ મેળવો.
જો વર્તુળ $C$ જેની ત્રિજ્યા $3$ હોય તે વર્તુળ $x^2 + y^2 + 2x - 4y - 4 = 0$ ને બહારથી બિંદુ $(2, 2)$ આગળ સ્પર્શે તો વર્તુળ $C$ એ $x-$ અક્ષ સાથે બનાવેલ અંત:ખંડની લંબાઈ મેળવો.