ઉગમબિંદુમાંથી વર્તૂળ $ x^2 + 2px+y^2 - 2qy + q^2 = 0 $ પર દોરેલા સ્પર્શક લંબ ક્યારે હોય ?
$p^2 + q^2 = 1$
$p^2- q^2 = 1$
$p^2- q^2 = 0$
એકપણ નહિ
બિંદુ $(4, -1)$ આગળ વર્તૂળ $x^2 + y^2 - 40x + 10y = 153$ અભિલંબનું સમીકરણ :
ધારોકે આપેલ વક્રના બધાજ બિંદુએ દોરેલ અભિલંબો એક નિશ્ચિત બિંદુ $(a, b)$ માંથી પસાર થાય છે. જે વક્ર $(3,-3)$ અને $(4,-2 \sqrt{2}),$ માંથી પસાર થાય અને $a-2 \sqrt{2} b=3,$ આપેલ હોય, તો $\left(a^{2}+b^{2}+a b\right)=....... .$
ધારો કે વર્તૂળો, બિંદુ $ (-1, 1)$ માંથી પસાર થાય છે અને $x$ અક્ષનો સ્પર્શકો છે. જો $(h , k) $ વર્તૂળના કેન્દ્રના યામ હોય, તો $k$ ના મૂલ્યનો ગણ કયા અંતરાલ દ્વારા દર્શાવાય ?
ઉગમબિદુમાંથી વર્તૂળ ${(x - 1)^2} + {y^2} = 1$ પર જીવા દોરવાંમા આવે છે. તો આ જીવાના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
જો બિંદુ $(1, 4)$ એ વર્તુળ $x^2 + y^2-6x - 10y + p = 0$ ની અંદર રહે અને વર્તુળ કોઈપણ અક્ષને છેદે કે સ્પર્શે નહીં તો $p$ ની શકય કિમત ............... અંતરાલમાં હોય.