$m$ ના કયા મૂલ્ય માટે રેખા $3x + 4y = m$ વર્તૂળ $x^2+ y^2 -2x - 8 = 0 $ ને સ્પર્શેં છે ?
$-18, 12$
$18, 12$
$18, -12$
$-18, -12$
જે વર્તુળનું કેન્દ્ર રેખાઓ $x - y = 1$ અને $2x + y= 3$ ના છેદબિંદુએ આવેલ હોય તે વર્તુળનું બિંદુ $(1 , -1)$ આગળ સ્પર્શકનું સમીકરણ ................... છે
અહી વર્તુળ $x ^{2}+ y ^{2}-4 x +3=0$ પરના બે બિંદુઓ $A$ અને $B$ માંથી દોરવામાં આવેલ સ્પર્શકએ ઉગમબિંદુ $O (0,0)$ આગળ મળે છે. તો ત્રિકોણ $OAB$ નું ક્ષેત્રફળ મેળવો.
બિંદુ $P (-3,2), Q (9,10)$ અને$ R (a, 4)$ એ $PR$ વ્યાસ વાળા વર્તુળ $C$ પર આવેલ છે. બિંદુુ $Q$ અને $R$ પર ના $C$ ના સ્પર્શકો બિંદુ $S$ માં કાપે છે. જો $S$ એ રેખા $2 x-k y=1$ પર આવેલ હોય, તો $k=.........$
જો રેખા $(x + g) cos\ \theta + (y +f) sin\theta = k$ વર્તૂળ $x^2 + y^2 + 2gx + 2fy + c =0$ , ને સ્પર્શેં, તો
ધારો કે વર્તૂળ $C$ નું કેન્દ્ર $(1,1)$ અને ત્રિજ્યા $ 1$ છે.જો $ (0,y)$ કેન્દ્રવાળું વર્તૂળ $T $ ઊગમબિંદુમાંથી પસાર થતું હોય અને વર્તૂળ $C $ ને બહારથી સ્પર્શતું હોય તો વર્તૂળ $T $ ની ત્રિજ્યા મેળવો.