અતિવલય $x^2 - 4y^2 = 36 $ ના સ્પર્શકનું સમીકરણ શોધો. જે રેખા $x - y + 4 = 0 $ ને લંબ છે.
$x - y + 3 = 0$
$x\,\, + \,\,y\,\, \pm \,\,3\,\,\sqrt 3 \,\, = \,\,0$
$2x\,\, + \,\,y\,\, \pm \,\,3\,\,\sqrt 3 \,\, = \,\,0$
$x\,\, - \,\,y\,\, - \,3\,\,\sqrt 3 \,\, = \,\,0$
વર્તૂળ $x^2 + y^2 = 16$ ની જીવાના મધ્યબિંદુનો બિંદુપથ શોધો. જે અતિવલય $9x^2 - 16y^2 = 144$ નો સ્પર્શક હોય.
રેખા $\,y\,\, = \,\,ax\,\, + \;\,b$ એ અતિવલય $\,\,\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ નો સ્પર્શક હોવાથી શરત હેઠળ ગતિ કરતા બિંદુ $P\,\,\left( {a,\,\,b} \right)\,\,$ નો બિંદુપથ
આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
અતિવલય $16x^2 - 9y^2 = 14$ નો નાભિલંબની લંબાઈ મેળવો.
અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\alpha }}\,\, - \,\,\frac{{{y^2}}}{{{{\sin }^2}\,\,\alpha }}\, = \,\,1\,$ માટે જ્યારે $\,\alpha $ બદલાતો હોય ત્યારે નીચેના માંથી કયું પદ અચળ રહે.