આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો :  નાભિઓ $(\pm 3 \sqrt{5},\,0),$  નાભિલંબની લંબાઈ $8$ 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Foci $(\pm 3 \sqrt{5},\, 0),$ the latus rectum is of length $8$.

Here, the foci are on the $x-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

since the foci are $(\pm 3 \sqrt{5}, \,0)$,  $c=\pm 3 \sqrt{5}$

Length of latus rectum $=8$

$\Rightarrow \frac{2 b^{2}}{a}=8$

$\Rightarrow b^{2}=4 a$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore a^{2}+4 a=45$

$\Rightarrow a^{2}+4 a-45=0$

$\Rightarrow a^{2}+9 a-5 a-45=0$

$\Rightarrow(a+9)(a-5)=0$

$\Rightarrow a=-9,5$

since a is non-negative, $a=5$

$\therefore b^{2}=4 a=4 \times 5=20$

Thus, the equation of the hyperbola is $\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$

Similar Questions

અતિવલય $4x^2 - 9y^2\, = 36$ નો અભિલંબ યામાક્ષો $x$ અને $y$ ને અનુક્રમે બિંદુ $A$ અને $B$ માં છેદે છે જો સમાંતરબાજુ ચતુષ્કોણ $OABP$ ( $O$ એ ઉંગમબિંદુ છે) બનાવવામાં આવે તો બિંદુ $P$ નો બિંદુપથ મેળવો.

  • [JEE MAIN 2018]

ધારો કે $H : \frac{x^{2}}{ a ^{2}}-\frac{y^{2}}{ b ^{2}}=1, a >0, b >0$ એ એક એવો અતિવલય છે કે જેની મુખ્ય અક્ષ અને અનુબદ્ધ અક્ષની લંબાઈનો સરવાળો $4(2 \sqrt{2}+\sqrt{14})$ છે. જો $H$ ની ઉત્કેન્દ્રતા $\frac{\sqrt{11}}{2}$ હોય,તો $a ^{2}+ b ^{2}$ નું મૂલ્ય $\dots\dots\dots$છે.

  • [JEE MAIN 2022]

$0<\theta<\pi / 2$ માટે, ને અતિવલય $x^2-y^2 \operatorname{cosec}^2 \theta=5$ ની ઉત્કેન્દ્રતા, ઉપવલય $x^2 \operatorname{cosec}^2 \theta+y^2=5$ ની ઉત્કેન્દ્રતા કરતાં $\sqrt{7}$ ઘણી હોય, તો $\theta$ નું મૂલ્ય____________ છે. 

  • [JEE MAIN 2024]

જો અતિવલય $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{5} = 1$ ના પ્રથમ ચરણમાં નાભીલંબનો સ્પર્શક $x-$ અક્ષ અને $y-$ અક્ષને અનુક્રમે બિંદુઓ $A$ અને $B$ માં છેદે તો $(OA)^2 - (OB)^2$ = ...................... જ્યાં $O$ એ ઉંગમબિંદુ 

  • [JEE MAIN 2014]

અતિવલય $2x^3 - 3y^2 = 6$ ના બિંદુ $(3, 2)$ આગળ સ્પર્શકનો ઢાળ :