ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\, = \,\,1$ની નાભિઓમાંથી પસાર થતું અને $(0, 3)$ કેન્દ્ર વાળા વર્તૂળની ત્રિજ્યા....
$4$
$3$
$\sqrt {12} $
$7/2$
ધારો કે $E$ એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$અને $C$ એ વર્તૂળ $x^2 + y^2 = 9$ છે. $P$ અને $Q$ બરાબર અનુક્રમે બિંદુઓ $(1, 2)$ અને $(2, 1)$ લઈએ, તો
$x-$ અક્ષ મુખ્યઅક્ષ અને ઉંગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયને ધ્યાનમાં લો. જો તેની ઉત્કેન્દ્ર્તા $\frac{3}{5}$ અને નાભીઓ વચ્ચેનું અંતર $6$ હોય તો ઉપવલયના શિરોબિંદુઓથી રચાતા ચતુષ્કોણનું ક્ષેત્રફળ ચો.એકમમાં મેળવો.
જો સુરેખા $y\,\, = \,\,4x\,\, + \;\,c$ એ ઉપવલય $\frac{{{x^2}}}{8}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય, તો $c\,\, = \,...........$
જો અતિવલય $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ પરના બે બિંદુઓ $P(a\sec \theta ,\;b\tan \theta )$ અને $Q(a\sec \phi ,\;b\tan \phi )$ ,કે જયાં $\theta + \phi = \frac{\pi }{2}$ છે.જો $(h, k)$ એ બિંદુઓ $P$ અને $Q$ આગળના અભિલંબનું છેદબિંદુ હોય તો $k$ ની કિંમત મેળવો.
જો ઉપવલય $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ એ રેખા $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ ને $x$- અક્ષ પર મળે છે અને રેખા $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ ને $y$-અક્ષ પર મળે છે તો ઉપવલયની ઉકેન્દ્રીતા . . . થાય.