10-2. Parabola, Ellipse, Hyperbola
hard

જો વક્રો $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ અને $x^{2}+y^{2}=12$ ના સામાન્ય સ્પર્શકની ઢાળ $m$ હોય, તો $12\,m^{2}=\dots\dots\dots$

A

$6$

B

$9$

C

$10$

D

$12$

(JEE MAIN-2022)

Solution

$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

equation of tangent to the ellipse is

$y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$

$y=m x \pm \sqrt{16\; m^{2}+9}$

$x^{2}+y^{2}=12$

equation of tangent to the circle is

$y=m x \pm \sqrt{12} \sqrt{1+m^{2}}$

for common tangent equate eq. $(i)$ and $(ii)$

$\Rightarrow 16 \;m ^{2}+9=12\left(1+ m ^{2}\right)$

$16\; m^{2}-12\; m^{2}=3$

$4 \;m ^{2}=3$

$12 \;m ^{2}=9$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.