ઉપવલય $x^{2} + 2y^{2} = 2$ ના કોઈ પણ સ્પર્શકનો અક્ષો વચ્ચે કપાયેલ અંત:ખંડના મધ્યબિંદુનો બિંદુપથ મેળવો.
$\frac{1}{{2{x^2}}}\,\, + \,\frac{1}{{4{y^2}}}\,\, = \,\,1$
$\frac{1}{{4{x^2}}}\,\, + \,\,\frac{1}{{2{y^2}}}\,\, = \,\,1$
$\frac{{{x^2}}}{2}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$
$\frac{{{x^2}}}{4}\,\, + \;\,\frac{{{y^2}}}{2}\,\, = \,\,1$
એક ઉપવલયની પ્રધાન અક્ષની અર્ધ લંબાઈ $OB$, તેની નાભિઓ $F$ અને $F'$ અને ખૂણો $FBF'$ કાટખૂણો છે. તો ઉપવલયની ઉત્કેન્દ્રતા.....
વક્ર $\frac{|\mathrm{x}|}{2}+\frac{|\mathrm{y}|}{3}=1$ ની બહારની બાજુના પ્રદેશ અને ઉપવલય $\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{9}=1$ ની અંદરની બાજુના પ્રદેશથી રચાતા વિસ્તારનું ક્ષેત્રફળ .......ચો.એકમ થાય
ધારો કે $P$ એ $F_1$ અને $F_2$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પરનું ચલિત બિંદુ છે. જો ત્રિકોણ $PF_1F_2$ નું ક્ષેત્રફળ $A$ હોય તો $A$ નું મહત્તમ મુલ્ય :
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષનાં અંત્યબિંદુઓ $(±3,\,0)$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(0,\,±2)$
ઉપવલય $\, \frac{{{x^2}}}{{25}}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1\,\,$ પર દોરેલા લંબ સ્પર્શકો ક્યા વક્ર પર છેદશે?