જો વર્તૂળ બંને અક્ષોને સ્પર્શેં અને સીધી રેખા $4x + 3y = 6$ ને પ્રથમ ચરણમાં અને તેની નીચે આવેલ હોય, તેવા વર્તૂળનું સમીકરણ :

  • A

    $4x^2+ 4y^2 - 4x - 4y + 1 = 0$

  • B

    $x^2 + y^2 - 6x - y - 9 = 0$

  • C

    $x^2 + y^2 - 6x - y + 9 = 0$

  • D

    $4(x^2 + y^2 -x - 6y) - 1 = 0$

Similar Questions

વર્તૂળ${x^2} + {y^2} = 9$ને બિંદુ $(4,3)$ માંથી સ્પર્શક દોરવામાં આવે છે.તો આ બિંદુ અને સ્પર્શકથી વર્તૂળ પરના સ્પર્શબિંદુથી બનતા ત્રિકોણનું ક્ષેત્રફળ મેળવો.

  • [IIT 1987]

રેખા $x = y$ એ વર્તુળ પરના બિંદુ $(1, 1)$ આગળ સ્પર્શે છે જો વર્તુળ બિંદુ $(1, -3)$ માંથી પસાર થતું હોય તો વર્તુળની ત્રિજ્યા મેળવો. 

  • [JEE MAIN 2019]

ધારોકે $5$ ત્રિજ્યાવાળું એક વર્તુળ, $x$-અક્ષની નીચે આવેલું છ. રેખા $L_{1}: 4 x+3 y+2=0$ એ વર્તુળ $C$ ના કેન્દ્ $P$ માંથી પસાર થાય છે અને રેખા $L_{2}: 3 x-4 y-11=0$ ને છદે છે. રેખા $L_{2}$ એ $C$ ને $Q$ આગળ સ્પર્શ છે. તો $P$ નું રેખા $5 x-12 y+51=0$ થી અંતર $\dots\dots\dots$છે.

  • [JEE MAIN 2022]

બિંદુ $ (0, 1) $ માંથી વર્તૂળ $ x^2 + y^2 - 2x + 4y = 0 $ પર દોરેલા સ્પર્શકોના સમીકરણ....

અહી $B$ એ વર્તુળ $x^{2}+y^{2}-2 x+4 y+1=0$ નું કેન્દ્ર છે. અહી બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ આગળના સ્પર્શકો બિંદુ $\mathrm{A}(3,1)$ આગળ છેદે છે તો  $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]