બિંદુ $(2, 3)$ ની સાપેક્ષે વર્તૂળ $x^2 + y^2 + 4x + 6y - 12 = 0$ ની સ્પર્શ જીવાનું સમીકરણ :
$4x = 17$
$4x + y = 17$
$4y = 17$
એકપણ નહિ
બિંદુ$\left( {\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right)$ માંથી વર્તૂળ $x^2 + y^2 = 9$ ના અભિલબનું સમીકરણ....
વિધાન $1$ : જે વર્તુળની ત્રિજ્યા $\sqrt {10} $ અને વ્યાસ રેખા $2x + y = 5$ પર આવેલ હોય તેવું એક જ વર્તુળનું સમીકરણ $x^2 + y^2 - 6x +2y = 0$
વિધાન $2$ : સમીકરણ $2x + y = 5$ એ વર્તુળ $x^2 + y^2 -6x+2y = 0$ ને લંબ છે
વર્તૂળ ${x^2} + {y^2} = 5$ નો બિંદુ $(1,-2)$ આગળનો સ્પર્શક એ વર્તૂળ ${x^2} + {y^2} - 8x + 6y + 20 = 0$ ને . . . . .
રેખા $4x + 3y + 5 = 0$ ને સમાંતર, વર્તૂળ $x^2 + y^2 - 6x + 4y = 12$ ની સ્પર્શક રેખાઓ :
વર્તૂળ $x^2 + y^2 -2x + 4y - 4 = 0$, માટે રેખા $2x - y - 1 = 0$ શું છે ?