English
Hindi
10-1.Circle and System of Circles
medium

જો રેખા $(x + g) cos\ \theta + (y +f) sin\theta = k$ વર્તૂળ $x^2 + y^2 + 2gx + 2fy + c =0$ , ને સ્પર્શેં, તો

A

$g^2 + f^2 = k^2 + c^2$

B

$g^2 + f^2 = k + c$

C

$g^2 + f^2 = k^2 + c$

D

એકપણ નહિ

Solution

Given circle

$x ^2+ y ^2+2 gx +2 gy + c =0$

where centre of circle $C (- g ,- f )$

and radius $r =\sqrt{g^2+ f ^2- c }$

Given line $x \cos \theta+y \sin \theta+(g \cos \theta+f \sin \theta-k=0)$

If line is tangent to circle then

$p=\left|\frac{a x_1+b y_1+c}{\sqrt{a^2+b^2}}\right|=r$

Hence perpendicular ditance of given line from centre $C (- g ,- f )$

$r=\left|\frac{g \cos \theta-f \sin \theta+g \cos \theta+f \sin \theta-k}{\sqrt{\sin ^2 \theta+\cos ^2 \theta}}\right|$

$\sqrt{g^2+f^2-c}=\left|\frac{-k}{\sqrt{1}}\right|$ here $\left[\sin ^2 \theta+\cos ^2 \theta=1\right]$

$\sqrt{g^2+f^2-c}=k$

On squaring both sides

$g^2+f^2-c=k^2$

$g^2+f^2=c+k^2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.