English
Hindi
9.Straight Line
medium

જો $(a_1, b_1)$ અને $(a_2, b_2)$ બિંદુથી સમાન અંતરે આવેલા બિંદુના બિંદુપથનું સમીકરણ $(a_1 - a_2)x + (b_1 - b_2)y + c = 0$ હોય, તો $'c'$ નું મૂલ્ય શોધો ?

A

$\sqrt {a_1^2\,\, + \,\,b_1^2\,\, - \,\,a_2^2\,\, - \,\,b_2^2} $

B

$\frac{1}{2}\,\,\,(a_2^2\,\, + \,\,b_2^2\,\, + \,\,a_1^2\,\, - \,\,b_1^2\,)$

C

$a_1^2\,\, - \,a_2^2\,\, + \,\,b_1^2\,\, - \,\,b_2^2$

D

$\frac{1}{2}\,\,(a_1^2\,\, + \,\,a_2^2\,\, + \,\,b_1^2\,\, + \,\,b_1^2)$

Solution

Let $( h , k )$ be the point on the locus.

Then by the given conditions,

$\left(h-a_1\right)^2+\left(k-b_1\right)^2=\left(h-a_2\right)^2+\left(k-b_2\right)^2$

$\Rightarrow 2 h\left(a_1-a_2\right)+2 k\left(b_1-b_2\right)+a_2^2-a_1^2+b_2^2-b_1^2=0$

$\Rightarrow h\left(a_1-a_2\right)+k\left(b_1-b_2\right)+\frac{1}{2}\left(a_2^2+b_2^2-a_1^2-b_1^2\right)=0$

$A l s o$, since $(h, k)$ lies on the given locus, therefore

$\left(a_1-a_2\right) x+\left(b_1-b_2\right) y+c=0$

Comparing Eqs.$(i)$ and $(ii)$, we get

$c=\frac{1}{2}\left(a_2^2+b_2^2-a_1^2-b_1^2\right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.