$\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ ના અનંતસ્પર્શકો વચ્ચેનો ખૂણો ${\text{ = }}\,...........$
$2\,\,{\tan ^{ - 1}}\,\,\left( {\frac{b}{a}} \right)$
${\tan ^{ - 1}}\,\,\left( {\frac{a}{b}} \right)$
$2\,\,{\tan ^{ - 1}}\,\,\left( {\frac{a}{b}} \right)$
${\tan ^{ - 1}}\,\,\left( {\frac{b}{a}} \right)$
બિંદુ $\mathrm{P}(-2 \sqrt{6}, \sqrt{3})$ એ અતિવલય $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ કે જેની ઉત્કેન્દ્રિતા $\frac{\sqrt{5}}{2} $ છે તેના પર આવેલ છે. જો બિંદુ $\mathrm{P}$ આગળનો અતિવલયનો સ્પર્શક અને અભિલંભએ અનુબદ્ધ અક્ષને અનુક્રમે બિંદુ $\mathrm{Q}$ અને $\mathrm{R}$ આગળ છેદે છે તો $QR$ ની કિમંત મેળવો.
અતિવલય $H : x^{2}-y^{2}=1$ અને ઉપવલય $E : \frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a > b >0$, માટે ધારોકે
$(1)$ $E$ ની ઉત્કેન્દ્રતા એ $H$ ની ઉત્કેન્દ્રતાની વ્યસ્ત છે, અને
$(2)$ રેખા $y=\sqrt{\frac{5}{2}} x+ K$ એ $E$ અને $H$ નો સામાન્ય સ્પર્શક છે.
તો $4\left(a^{2}+b^{2}\right)=$ ...........
અતિવલય $x^2 - 4y^2 = 36 $ ના સ્પર્શકનું સમીકરણ શોધો. જે રેખા $x - y + 4 = 0 $ ને લંબ છે.
બે અતિવલયો $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,\,1\,$ અને $\frac{{{y^2}}}{{{a^2}}}\,\, - \,\,\frac{{{x^2}}}{{{b^2}}}\,\, = \,\,1$ ના સામાન્ય સ્પર્શકોનું સમીકરણ .......
એક અતિવલય , જેના નાભિલંબની લંબાઇ $8$ છે તથા જેના અનુબદ્વ અક્ષની લંબાઇ તેની નાભિઓ વચ્ચેના અંતરની અડધી છે,તો ઉકેન્દ્રતા . . . . છે.