ઉપવલય $\frac{{{x^2}}}{{36}}\,\, + \;\,\frac{{{y^2}}}{{49}}\,\, = \,\,1$ ના નાભિલંબની લંબાઈ મેળવો.
$98/6$
$72/7$
$72/14$
$98/12$
બિંદુઓ $(4, 3)$ અને $(- 1,4)$ માંથી પસાર થતા હોય તથા જેનો પ્રધાન અક્ષ $x-$ અક્ષ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
બે ગણ $A$ અને $B$ નીચે પ્રમાણે છે: $A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1$ અને $\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ તો : . . . . .
જો ઉપવલય $\frac{ x ^{2}}{16}+\frac{ y ^{2}}{ b ^{2}}=1$ અને વર્તુળ $x ^{2}+ y ^{2}=4 b , b > 4$ નાં છેદબિંદુઓ વક્ર $y^{2}=3 x^{2}$ પર આવેલ હોય, તો $b=..... .$
ઉપવલય $x^{2} + 2y^{2} = 2$ ના કોઈ પણ સ્પર્શકનો અક્ષો વચ્ચે કપાયેલ અંત:ખંડના મધ્યબિંદુનો બિંદુપથ મેળવો.